Skip to content Skip to navigation

Magnetoelectric Materials and Functional Interfaces

Magnetoelectric (ME) materials are at the frontier of materials research due to a variety of non-trivial coupling mechanisms interweaving electric and magnetic degrees of freedom. Their properties are in many aspects superior over today’s spintronic materials where the emphasis is on creating and manipulating spin-polarized (but nevertheless dissipating) electric currents. Controlling ME coupling on the nanoscale enables unprecedented possibilities to tailor functional materials and complex nanostructures, thus opening unique perspectives for novel technologies where electrically controlled magnetism offers innovative approaches for device operation.
The primary objective of this IRG is to understand magnetoelectricity in complex functional heterostructures and enable its unconventional use beyond the realm of static equilibrium and linear response. This objective will be achieved through interdisciplinary investigations of ME antiferromagnets, complex oxide thin films, ME multiferroics, and molecular-level magnetoelectrics. They will be implemented in new functional heterostructures and subject to external stimuli giving rise to responses in a hitherto unexplored parameter space. The expected research outcomes are new insights in the ME coupling and spin dynamics of magnetoelectrics, development of novel voltage-controlled ultra-low power spintronic devices, and harnessing voltage-controlled entropy changes in conceptually new materials design.