Skip to content Skip to navigation

Program Highlights for year 2014

"Caged" Liquid Crystal Droplets

General Overview: Researchers at the Wisconsin MRSEC are working to develop sensors that can detect toxic substances near a single cell by exploiting the unique properties of liquid crystals (LC).  LCs are materials that

Synthesis of Complex Semiconductors from Atoms That Don't Want to Mix

General Overview:  The Wisconsin MRSEC is investigating innovative methods to incorporate a greatly expanded diversity of atom types into semiconductors, thus yielding materials with a new range of electronic properties.  Semiconductors are the foundation of modern electronic

High School Students Synthesize Graphene by Chemical Vapor Deposition

Members of the UW MRSEC Interdisciplinary Education Group (IEG) collaborated with MRSEC researchers to develop a laboratory method that enables students to synthesize research quality graphene by CVD.  The method uses safe, inexpensive equipment and reagents so the synthesis can be performed in a high school classroom.  To date, the IEG has

Simulations of Active Nematics

Simulations of a model for microtubule(MT)-based active nematics capture experimentally observed defect dynamics. The image on the right shows three sequential images from experimental system in which +½ and -½ defects are created through a bending stability and subsequently separate.

Defect Dynamics in 2D Active Nematic Liquid Crystals

While conventional materials are assembled from inanimate building blocks, we are exploring the behavior of soft materials in which the constituent components consume energy and spontaneously coordinate their microscopic behavior and form novel materials such as active gels, crawling emulsion droplets, and living liquid crystals.

Graphene Electronic Superhighways

Electrons in epitaxial graphene nanoribbons travel unimpeded at high speed for large distances, so that they are ideally suited for graphene electronics.

Chiral magnetism at oxide interfaces

LaAlO3 and SrTiO3 are two well known non‐magnetic insulators, but when LaAlO3 is deposited on SrTiO3 to form a clean LaAlO3/SrTiO3 interface, the interface becomes an ultra‐thin sheet of conductor. Even more surprisingly, the interface exhibits unusual magnetic properties, but the origin of the observed interfacial magnetism is under debate.

Observation of the inverse spin Hall effect in ZnO thin films: An all-electrical approach to spin injection and detection

Discovery: We have observed a large inverse spin-Hall effect (ISHE) in ZnO films grown using Pulsed Laser Deposition. This discovery provides an entirely new means of measuring spin currents in semiconductors.