Skip to content Skip to navigation

Program Highlights

How to Avoid Parasitic Cracks During Layer Transfer

Producing high quality thin films of controlled thickness is a critical step for the development of ferroelectric nanophotonic devices. Developed recently, the process referred to as layer transfer has been shown to be very promising: ions are implanted in a plan parallel to the interface of a bilayer system that is then heated.

Patterning Organic Semiconductor Single Crystal Field-Effect Transistors

Single-crystal organic field-effect transistors (OFETs) are ideal device structures for studying fundamental science associated with charge transport in organic materials and have demonstrated outstanding electrical characteristics. However, it remains a technical challenge to integrate single-crystal devices into practical electronic applications.

Flow-Enhanced Single Molecule DNA Hybridization Studies

Objective: To develop novel microfluidic flow cells that allow trapping of single DNA molecules and studies of the binding of sequence-specific probes to the trapped DNA.

Thinking Small: Nanoscale Informal Science Education (NISE) Activities

The University of Maryland (UMD) MRSEC joined the NISE Network in the nation-wide effort to bring nanoscience to communities across the country during the week of March 29 - April 6, 2008.

Electromagnons in Multiferroics

The coupling of the magnetic and ferroelectric order in multiferroics produces new excitations of mixed magnetic (magnons) and lattice (phonons) character ; electro-magnons.

Giant Magneto-Elastic Coupling in hexagonal Y(Lu)MnO3

Multiferroic Y(Lu)MnO3 undergoes an isostructural transition at the magnetic Neel transition, producing giant atomic displacement for every atom in the unit cell.

Coaxial Nanostructures for Energy Storage

Electrochemical oxidation of aluminum produces very regular arrays of nanopores. UMD-MRSEC researchers are mastering (1) nanopore synthesis and (2) deposition of coaxial multilayers of ultrathin films into the nanopores to create a new generation of devices for storing electrical energy that function as supercapacitors and batteries.

Electrons in Graphene can Travel 100 Times Faster than in Silicon

Mobility measures how fast electrons travel in a material when an electric field (i.e.

Electronic Device Applications for Narrow Gap Semiconductors

Semiconductors with narrow energy gaps have electronic properties, including a high mobility and strong spin-orbit coupling, that are advantageous for electronic device applications. The switching speed of a field-effect transistor and the sensitivity of a geometrical magnetoresistor are improved by a high carrier mobility.

Pages