Program Highlights for year 2006
Field-effect transistors made of single organic crystals are ideal for studying the charge transport characteristics of organic semiconductor materials. Their outstanding device performance, relative to that of transistors made of organic thin films, makes them also attractive candidates for electronic applications such as active matrix displays and sensor arrays.
Organic semiconductor materials have shown promise in recent years for use in low-cost electronics applications such as photovoltaics, chemical sensors, and flat-panel displays.
Scientists in the University of Nebraska MRSEC are using very short light pulses from a femtosecond laser to perturb magnetic materials and to probe their behavior at times after the perturbation. The light pulses are only about 100 millionth-billionths of a second long.
The recent decade has seen an explosion of optical communication. Yet much of the information processing is conducted electronically since there have been few truly tunable optical devices. Ferroelectric materials offer a potential solution. They possess interesting nonlinear properties that can be used to design and fabricate unique active tunable nanophotonic devices.
Based on the similarity of the sequences of combinatorially selected peptides that have similar binding characteristics, we developed a bioinformatics approach that provides a general and simple methodology to quantitatively categorize a large number of inorganic binding peptides.
Marjorie Longo, UC Davis; Steve Boxer, Stanford University
What are PPA “foldamers”
nonbiological polymers that fold
model systems for self-assembling nano structures
challenge for simulation: long timescale and complex dynamics
New results
longer chains considerably are more complex: multiple traps and remarkable complexity
The vortex state of a magnetic nanoring has special attributes of no magnetic poles nor stray fields. The circulatory magnetization can have two chiralities:, left-handed or right-handed, for storing "0" and "1", as shown in Fig. 1.
Pages