Skip to content Skip to navigation

Program Highlights for year 2010

Imaging Quantum states of Bosonic atoms

Research

By tuning the optical lattice depth or the interaction between cold atoms, a weakly-interacting atomic

(2010)

MRSEC-Inspired Exhibits at Chicago's Museum of Science & Industry

Education

Science Storms, the newest permanent exhibit at Chicago's Museum of Science and Industry, opened to the public on March 18th.  MRSEC graduate students, postdocs, research staff and faculty assisted with the compilation of an inventory of chemical reactions for the Interactive Periodic Tables.  In addition, aspects of granular materials research  in IRGs 1 and 2 are featured prominently.

(2010)

Genetically-Engineered Protein Materials and Self-Assembly : Video

The video describes the Montclare lab research efforts to fabricate nano-scaled self-assembling proteins as materials. It focuses on the use of bacteria as the synthetic powerhouse for soft materials synthesis and features the self-assembly behavior of these biologically-inspired materials for potential use in therapeutic delivery and regenerative medicine.

(2010)

Effect of Particle Additives on the Texture Evolution in Block Copolymer Blends

Research

Block copolymer/nanoparticle (BCP/NP) composites have attracted interest because of the unique opportunities for tuning the properties of hybrid materials arising from the control of orientation and location of particle fillers within the copolymer matrix. However, quiescent organized block copolymer microstructures are not

(2010)

Grain Boundary Energy from Experiment and Simulation

Research

A collaboration between the CMU MRSEC and Sandia National Laboratory has permitted the first large scale comparison between experimentally measured grain boundary energies and energies calculated based on atomistic simulations.

(2010)

Cell Motility Driven by Actin Polymerization: A New Proposed Mechanism

Research

In designing new motile materials, much can be learned by studying the

(2010)

Ultra-Fast Electrically Driven Single Spin Rotations

Research

A single electron spin in an external magnetic field forms a two-level system that can be used to create a spin qubit. However, achieving fast single spin rotations, as would be required to control a spin qubit, is a major challenge.

(2010)

Ferroelectric Oxide Directly on Silicon

Research

Silicon/silicon dioxide is arguably the most important technological interface. With the end of

(2010)

Spin Transport in Nanowires

Research

The interplay between spin transport and exchange coupling profoundly affects charge transport between conventional metals and ferromagnets. This results in  giant magnetoresistance and the spin valve

(2010)

Discover Magazine Names NYU Physics Finding One of Top Stories of 2009

The NYU team, led by Jasna Brujic, an assistant professor in NYU’s Department of Physics, developed an innovative way to tabulate the number of spheres-they created a method for determining how spheres

(2010)

Pages