In eukaryotic cells, kinesin motor proteins transport intracellular cargo along microtubules, 25 nm protein filaments that form the cell cytoskeleton. This biomotor transport system is of fundamental importance in cell function and dysfunction, and provides a model system for nano- and microscale transport in engineered systems.
The recent decade has seen an explosion of optical communication. Yet much of the information processing is conducted electronically since there have been few truly tunable optical devices. Ferroelectric materials offer a potential solution. They possess interesting nonlinear properties that can be used to design and fabricate unique active tunable nanophotonic devices. Photonic crystals are synthetic hetero-structures that provide an unprecedented ability to manipulate light including slowing down and reflecting selected frequencies.
Scientists in the University of Nebraska MRSEC are using very short light pulses from a femtosecond laser to perturb magnetic materials and to probe their behavior at times after the perturbation. The light pulses are only about 100 millionth-billionths of a second long.
Field-effect transistors made of single organic crystals are ideal for studying the charge transport characteristics of organic semiconductor materials. Their outstanding device performance, relative to that of transistors made of organic thin films, makes them also attractive candidates for electronic applications such as active matrix displays and sensor arrays. The only approach currently available for creating single crystal devices is manual selection and placing of individual crystals—a process prohibitive for producing devices at high density and with reasonable throughput.
Magnetism in metallic films and interfaces has been intensively studied since the discovery of Giant MagnetoResistance (GMR) in the late 1980s. This effect enabled fabrication of high sensitivity magnetic field sensors for the read heads in magnetic hard disks, revolutionizing magnetic recording. GMR occurs in structures where an ultra-thin "non-magnetic" film is sandwiched between two magnets, Fe / Cr / Fe being a popular example. Although often ignored, the weak magnetism of the Cr film is fascinating in its own right.
In the Namib Desert in Namibia, Africa, a tiny beetle is able to convert
microscopic droplets of water present in a morning fog into larger
sized droplets that are directed into the beetle's mouth to quench a
Human embryonic stem cells (hESCs) hold vast promise in science and medicine because of their potential to replicate indefinitely and their capability to differentiate to any cell type found in the adult. Many environmental cues, including soluble factors and intercellular signals, affect hESC differentiation and self-renewal decisions.
The MIT MRSEC, in collaboration with the Materials Processing Center (MPC) and the Department of Materials Science and Engineering (DMSE), has launched a new MIT-wide materials website...The MIT MRSEC, in collaboration with the Materials Processing Center (MPC) and the Department of Materials Science and Engineering (DMSE), has launched a new MIT-wide materials website designed to help interested parties navigate the diverse and sometimes confusing labyrinth of departments, labs and centers (and associated user facilities) on campus involved in materials research.