The IRG on ferroelectric nanophotonic materials and devices seeks to develop tunable photonic devices by combining the nonlinear dispersion of photonic metamaterials with the unusual optical properties of ferroelectric perovskites. A series of experimental tests and theoretical calculations have demonstrated the potential of this approach. The bottom figure shows how the refractive index of a ferroelectric thin film can be changed with applied electric field. The top right shows how light can be confined to a ferroelectric wave-guide the results of a theoretical calculation.
The Oklahoma-Arkansas MRSEC hosted the14th SIMC conference which engaged international participation from a diverse group of more than 30 nations. The technical sessions presented over 5 days with parallel sessions encompassed the transfer of many new and developing ideas, and the talks received the highest evaluation as indicated by the results of the conference survey. Download
Chemical Engineering, Materials Science & Engineering, and Microbiology, University of Washington We show that a protein with no intrinsic inorganic synthesis activity can be endowed with the ability to control the formation of inorganic nanostructures under thermodynamically unfavorable (nonequilibrium) conditions, reproducing a key feature of biological hard-tissue growth and assembly. The nonequilibrium synthesis of Cu2O nanoparticles is accomplished using an engineered derivative of the DNA-binding protein TraI in a room temperature precursor electrolyte.
Based on the similarity of the sequences of combinatorially selected peptide that have similar binding characteristics, we developed a bioinformatics approach that provides a general and simple methodology to quantitatively categorize a large number of inorganic binding peptides. Furthermore, the approach also provides a way to knowledge-based design a new set of binding sequences specific to inorganic surfaces with predictable functionalities.
After spending two summers participating in the Research Experience for Teachers Program at MIT's MRSEC, Ms. Julie O'Loughlin, a science teacher at Breed Middle School in Lynn, MA, brings her eighth-grade classes to CMSE to share the exciting research being done at the Center. The workshop is one example of the unique synergistic interaction between the research, facilities and education components of the MIT MRSEC.
Modern liquid crystal displays (LCDs) operate by achieving a desired orientation of the LC molecules within the display. LCMRC researchers have demonstrated that topographic surface patterns made by nanoimprinting can produce exotic surface alignment of LCs, including bistable orientations (NE or NW) generated by an array of nanoscale boxes on the surface, as shown in the figure. Bistability is a feature by which the pixels in a display to remember their state even in absence of applied voltage, an enabling capability for the fabrication of extremely low power consumption displays.
Active interface architectures, exhibiting structural sensitivity to the presence of chemical species or light, are of interest for sensor and functional nanostructure applications. LCMRC researchers have demonstrated that it is possible to use liquid crystals to read out the state of a photoactive monolayer with great sensitivity to the incident wavelength. The wavelength dependent photo-induced shape transition of interfacial molecules from linear (trans) to bent (cis) produces distinct orientational changes in a contacting liquid crystal layer that can in turn be read out optically.
Penicillin, long used in medications, is now being studied as a coating, a novel weapon against bacteria that could protect medical implants and the surgical tools used to insert them. The development could potentially save thousands of lives, as many patients contract infections following surgery.
Brownian motion, the tiny random movements of small objects suspended in a fluid, has served as a paradigm for concepts of randomness ranging from noise in light detectors to fluctuations in the stock market.