Skip to content Skip to navigation

Program Highlights

New Haven Science Fair Participation

CRISP continued its interactions with industrial companies that aim to commercialize broadly new and simpler approach for force microscopy measurements.  Separately, CRISP continued to train graduate students in research, writing, and presentation skills by providing the opportunity to attend a number of international conferences.

(2017)

Tailoring Topological Surface States

Topological crystalline insulators feature conducting surface states for electrons whose existence is protected by crystal symmetry.  Scanning probe microscopy experiments on SnTe reveal that such metallic topological states can coexist next to semiconducting regions.

(2017)

Programming Dimensionality in Superatomic Materials

Featured as one of the “Ten Ideas That Will Change the World” in Scientific American  in 2016, the discovery of assembling site-differentiated, atomically precise clusters into dimensionally controlled materials opens a new way to design and program a next generation of functional nanomaterials.

(2017)

Rotating van der Waals Heterostructures

IRG1 of the Columbia MRSEC seeks to understand the behavior of van der Waals heterostructures created by assembly of atomically thin layered materials. One important question in this effort is how the relative orientation between the layers affects multiple properties.

(2017)

Efficient Generation of Long-lived Triplet Excitons in 2D Hybrid Perovskites

Most recent work on hybrid organic-inorganic perovskites is focused on solar cell applications. Hybrid perovskites, however, provide a flexible platform for materials design, with prospects for many different applications.

(2017)

Magnetic Particle Chains for Directionally Controlled Actuation of Soft Robots

Researchers at North Carolina State University and Elon University have developed soft robots based on magnetic field-directed self-assembly of magnetic particles into chains embedded in elastomer films.

(2017)

Coherent Flows in Confined 3D Active Isotropic Fluids

Navier-Stokes equations dictate that the conventional fluid flows only in response to an externally imposed gradient in stress or a body force. We developed a novel active fluid that is comprised of microtubules and energy consuming molecular motors kinesin.

(2017)

Directing Actin Polymerization to Membranes

Biological membranes are deformed and shaped by proteins that assemble into higher-order scaffolds. These scaffolds target the force-generating polymerization of actin filaments to deform and shape the membrane.

(2017)

RET Inspires Research Collaboration Between Middle School Students and MIT Research Group

Education

The Research Experience for Teachers (RET) program at the MIT MRSEC immerses local science teachers in materials research on campus to increase their content knowledge, and develop pedagogical material for their classroom use.

(2017)

Materials Deficient in Oxygen Show Promise in Magnetically Controlled Optical Devices

Research

MIT MRSEC researchers, have created both polycrystalline and single-crystal films of iron-substituted metal oxides that show room temperature magnetism and magneto-optical properties depending on the oxygen pressure at which the films are grown and their resultant oxygen composition.

(2017)

Pages