Skip to content Skip to navigation

Program Highlights

Harnessing Mixed Anion Materials for Novel Magnetic Properties

Precise synthetic control of the local electronic structure of metal centers within materials offers the potential to realize exotic physical properties. In particular, tuning the electronic structure of metal centers enables the creation of strongly correlated electron systems, enabling the exploration of fundamental questions about magnetism and superconductivity.

(2018)

Polyhedral Assembly of Heteroanionic Materials

A route has been formulated that leverages heteroleptic building units to lift inversion symmetry in heteroanionic materials from balancing short-range and long-range interactions favoring octahedral tilting in perovskite-derived structures. The resulting increase in the number of noncentrosymmetric (NCS) materials is important for improving the performance of compounds found in actuator, imaging, and data storage technologies.

(2018)

Computational Discovery of New Oxychalcogenide Compounds

High-throughput density functional theory (DFT) calculations are used to accelerate the discovery of new oxychalcogenide compounds. In particular, experimentally-known crystal structures are decorated with essentially all possible combinations of elements in the periodic table, generating thousands of potential compounds.

(2018)

Electronic Coupling in Organic-Transition Metal Dichalcogenide Heterojunctions

Heterojunctions containing two-dimensional materials can give rise to unique effects at the interface or enhance existing optical properties of the composite layers. Using organic molecules in these heterojunctions has the advantage to enable synthetically tunable electronic and optical properties.

(2018)

Reconfigurable 2D Materials with Neuromorphic Functionality

Solid-state electronics and advanced computation has spurred significant interest in artificial intelligence and neuromorphic (i.e., brain-like) computing. However, the deterministic correlations between input and action in conventional silicon microelectronics are not well-matched to information processing in biological systems.

(2018)

Forward-looking Metalens

Inspired by the human eye, a team led by Clarke at the Harvard MRSEC has reported in Science Advances an adaptive metalens that is a flat, electronically-controlled artificial eye. This new lens which combines breakthroughs in artificial muscle and lens technologies simultaneously controls focus, astigmatism, and image shift.

(2018)

Crushing Soda Cans: Predicting the Stability Landscape of Shell Buckling

Crushing a soda can from top to bottom is easier if it is dented initially on the side. Predicting the force needed to crush a dented can, however, which is of critical importance for structural reliance of materials engineering is quite challenging.

(2018)

NanoThermoMechanical Thermal Computing

Research

Limited performance and reliability of electronic devices at extreme temperatures, intensive radiation found in space exploration missions and earth-based applications requires the development of alternative computing technologies. Nebraska MRSEC researchers have designed and prototyped the world’s first high-temperature thermal diode.

(2018)

Pages