Skip to content Skip to navigation

Program Highlights

Computational Design of Triblock Amphiphiles with 1-nm Domains

Block polymers are a class of versatile self-assembling soft materials that can form exquisite nanostructures for applications including ion transport membranes for batteries and fuel cells, and templates for inorganic oxide catalysts.

From Semiconductor to Metal in Two-dimensional Tellurium

Atomically-thin sheets of semiconductors have been of immense interest since the Nobel-Prize-winning discovery of graphene or two-dimensional (2D) carbon. Such materials represent the ultimate limit of “scaling” to small sizes, of vital importance in the semiconductor device industry.

Designing the flow properties of concentrated particle suspensions

In a concentrated suspension of small solid particles in a liquid under shear, a large number of dynamically evolving particle-particle and particle-liquid interfaces controls the overall flow properties.

Wafer-scale synthesis of monolayer two-dimensional porphyrin polymers

At the University of Chicago MRSEC, Park and Sibener developed a synthesis of two-dimensional (2D) polymers with wafer-scale homogeneity, one monolayer thick, using a general and scalable growth method called laminar assembly polymerization.

Unique Facilities: Benchtop X-ray Spectrometer for Accelerating Discovery and Characterization of Novel Phosphorous-Rich Materials

MEM-C has developed a unique high-resolution x-ray emission spectrometer for studying phosphorus-rich, air-sensitive materials.

MEM-C IRG-2: An atomically thin in-plane layered antiferromagnetic insulator

We investigate the magnetic order of atomically thin CrCl3 by employing vertical tunneling measurements, which are sensitive to the relative alignment of spins in different layers. 

Bioinspired DNA Origami Capsids

DNA origami technology is used to develop building blocks that self-assemble into predetermined finite-sized structures.

Disclination loops in 3D Active Nematics

Current active matter systems, such as self propelled colloids or migrating cells, are inherently 2D, which limits the potential engineering applications. Brandeis developed the first 3D active nematic material by mixing an isotropic active fluid (Microtubules + kinesin motors) with a passive nematic colloidal liquid crystal (fd viruses).

Rheology of active isotropic gels

Cytoplasmic flows, bacterial colonies, and algal blooms are ubiquitous examples of active suspensions assembled from self-propelled particles, which internally inject energy into their suspending medium and, at sufficient concentrations, can produce large-scale flows.

Repulsive and attractive colloidal rafts with switchable comformational states

We describe hierarchical assemblages of colloidal rods that mimic some of the complexity and reconfigurability of biological structures. In particular, we show that chiral rod-like inclusions dissolved in an achiral colloidal membrane assemble into rafts, which are adaptable finite-sized liquid droplets that exhibit two distinct chiral states of opposite handedness.

Pages