Skip to content Skip to navigation

Program Highlights

Optical Control of Polarization in Hybrid 2D-Ferroelectric Structures

Switchable electric polarization of ferroelectric materials can serve as a state variable in advanced electronic systems, such as non-volatile memories and logic. Control of ferroelectric polarization by external stimuli is the key component for these systems.

Direct Observation of Ferrimagnetism in a Multiferroic Hexagonal Ferrite

Multiferroics is a class of materials that exhibits a coexistence of electric and magnetic polarizations.  Coupling of these polarizations is potentially useful for energy-efficient information storage and processing. Hexagonal rare-earth ferrites (h-RFeO3, where R is rare-earth element and Fe is iron) are new family of multiferroic materials.

Nebraska MRSEC Facility: Synthesis and Characterization of Graphene-Like Boron-Carbon-Nitrogen Monolayers

The emergence of two-dimensional (2D) materials, which are only one atom or one structural unit cell thick, has stimulated an enormous range of research effort. The well-known example is graphene – a zero band gap semiconductor, which exhibits outstanding charge carrier mobility. However, the absence of a band gap is a major hindrance in implementing graphene in 2D electronics.

Día De la Ciencia / Science Day - bilingual event at Princeton's MRSEC

On April 8, 2017, PCCM held its first Día de la Ciencia at the Princeton Public Library. Forty scientists set up 20 table presentations and met with over 500 members of the community.

Imaging and Analysis Center Partners with Industry and Other Institutions

The Imaging and Analysis Center (IAC) supported by PCCM is a world-leading facility for materials characterization. It is a critical resource to our industrial user community. The advanced instrumentation and expertise in the IAC provide ultimate opportunity for us to actively interact with industrial scientists.

Stars of Materials Science with Professors Cliff Brangwynne and Rod Priestley

On April 1, 2017 over 500 people visited Princeton University to learn about polymers from Princeton Center for Complex Materials researchers. Members of the NSF funded MRSEC in Interdisciplinary Research Group 2 presented a multimedia demonstration and lecture featuring audience participation.

New Color Centers in Diamond for Quantum Information Science

Color centers in diamond are a promising platform for quantum information science, as they can serve as solid state quantum bits with efficient optical transitions.

Electrical Manipulation of Nuclear Spins in Silicon

The spin degree of freedom for donor nuclei in silicon have exceptionally long coherence times making them useful as either quantum bits (qubits) or long-lived quantum memories. Nuclear spins are hard to control in nanoscale devices since they are thought to only be coherently manipulated using magnetic fields, which are hard to confine.

Direct Measurement of the Local Glass Transition in Nanophase Structured Copolymers with One Nanometer Resolution

Block copolymers, which self-assemble into nanostructures due to the incompatibility of each block, have generated intense scientific interest and are used in a myriad of important technologies.  In such systems, the majority of the macromolecules can lie within a few nanometers of an internal interface, within a region where the dynamics and mechanical properties can be highly modified from th

Dramatic Tunability in Melting Temperature and Crystallinity of Polyethylene by Exploiting Confinement During Processing

We exploited Matrix Assited Pulsed Laser Evaporation (MAPLE) to deposit polyethylene from a quasi-vapor phase at a controlled substrate temperature, to crystallize polymers under confinement at a wide range of target crystallization temperature, Tc.  The team showed the remarkable controllability of the semi-crystalline structure of PE by MAPLE with the control of substrate temp.; see Figure A

Pages